523 research outputs found

    QRAT+: Generalizing QRAT by a More Powerful QBF Redundancy Property

    Full text link
    The QRAT (quantified resolution asymmetric tautology) proof system simulates virtually all inference rules applied in state of the art quantified Boolean formula (QBF) reasoning tools. It consists of rules to rewrite a QBF by adding and deleting clauses and universal literals that have a certain redundancy property. To check for this redundancy property in QRAT, propositional unit propagation (UP) is applied to the quantifier free, i.e., propositional part of the QBF. We generalize the redundancy property in the QRAT system by QBF specific UP (QUP). QUP extends UP by the universal reduction operation to eliminate universal literals from clauses. We apply QUP to an abstraction of the QBF where certain universal quantifiers are converted into existential ones. This way, we obtain a generalization of QRAT we call QRAT+. The redundancy property in QRAT+ based on QUP is more powerful than the one in QRAT based on UP. We report on proof theoretical improvements and experimental results to illustrate the benefits of QRAT+ for QBF preprocessing.Comment: preprint of a paper to be published at IJCAR 2018, LNCS, Springer, including appendi

    Mutant mitochondrial elongation factor G1 and combined oxidative phosphorylation deficiency

    Get PDF
    Although most components of the mitochondrial translation apparatus are encoded by nuclear genes, all known molecular defects associated with impaired mitochondrial translation are due to mutations in mitochondrial DNA. We investigated two siblings with a severe defect in mitochondrial translation, reduced levels of oxidative phosphorylation complexes containing mitochondrial DNA (mtDNA)–encoded subunits, and progressive hepatoencephalopathy. We mapped the defective gene to a region on chromosome 3q containing elongation factor G1 (EFG1), which encodes a mitochondrial translation factor. Sequencing of EFG1 revealed a mutation affecting a conserved residue of the guanosine triphosphate (GTP)–binding domain. These results define a new class of gene defects underlying disorders of oxidative phosphorylation

    Some Rare Indo-Pacific Coral Species Are Probable Hybrids

    Get PDF
    Background: coral reefs worldwide face a variety of threats and many coral species are increasingly endangered. It is often assumed that rare coral species face higher risks of extinction because they have very small effective population sizes, a predicted consequence of which is decreased genetic diversity and adaptive potential.\ud \ud Methodology/Principal Findings: here we show that some Indo-Pacific members of the coral genus Acropora have very small global population sizes and are likely to be unidirectional hybrids. Whether this reflects hybrid origins or secondary hybridization following speciation is unclear.\ud \ud Conclusions/Significance: the interspecific gene flow demonstrated here implies increased genetic diversity and adaptive potential in these coral species. Rare Acropora species may therefore be less vulnerable to extinction than has often been assumed because of their propensity for hybridization and introgression, which may increase their adaptive potential

    A kinetic analysis methodology to elucidate the roles of metal, support and solvent for the hydrogenation of 4-phenyl-2-butanone over Pt/TiO<inf>2</inf>

    Get PDF
    The rate and, more importantly, selectivity (ketone vs aromatic ring) of the hydrogenation of 4-phenyl-2-butanone over a Pt/TiO₂ catalyst have been shown to vary with solvent. In this study, a fundamental kinetic model for this multi-phase reaction has been developed incorporating statistical analysis methods to strengthen the foundations of mechanistically sound kinetic models. A 2-site model was determined to be most appropriate, describing aromatic hydrogenation (postulated to be over a platinum site) and ketone hydrogenation (postulated to be at the platinum–titania interface). Solvent choice has little impact on the ketone hydrogenation rate constant but strongly impacts aromatic hydrogenation due to solvent-catalyst interaction. Reaction selectivity is also correlated to a fitted product adsorption constant parameter. The kinetic analysis method shown has demonstrated the role of solvents in influencing reactant adsorption and reaction selectivity.We acknowledge EPSRC for funding as part of the CASTech grant (EP/G011397/1) and the Department of Employment and Learning for a studentship (IM). NSB was funded by a PhD scholarship from the University of Birmingham. SKW was supported by an Engineering Doctorate Studentship in Formulation Engineering at the University of Birmingham sponsored by the EPSRC (EP/G036713/1) and Johnson Matthey.This is the final version of the article. It was first available from Elsevier via http://dx.doi.org/10.1016/j.jcat.2015.06.00

    Genetic analyses of maternal and teacher ratings on attention problems in 7-year-old Dutch twins

    Get PDF
    The goal of the present study is to examine genetic and environmental influences on maternal and teacher ratings of Attention Problems (AP) in 7-year-old children. Teachers completed the Teacher Report Form (N=2259 pairs), and mothers the Child Behavior Checklist (N=2057 pairs). Higher correlations were found in twins rated by the same teacher than in twins rated by different teachers. This can be explained by rater bias or by a greater environmental sharing in twins, who are in the same classroom. We further found that 41% of the variation in maternal and teacher ratings is explained by a common factor. The heritability of this common factor is 78%. The heritabilities of the rater specific factors of mothers and teachers are 76% and 39%, respectively. Because Attention Problems that are persistent over situations may indicate more serious behavior problems than context dependent Attention Problems, we believe that gene finding strategies should focus on this common phenotype

    Effect of solvent on the hydrogenation of 4-phenyl-2-butanone over Pt based catalysts

    Get PDF
    In part I of this study, experimental data were presented for the hydrogenation of 4-phenyl-2-butanone with a 4% Pt/TiO2 catalyst where the reaction rate and selectivity (ketone vs. aromatic ring) varied with solvent. In this paper, a rigorous kinetic model is presented utilising these data, incorporating statistical analysis methods to strengthen the foundations of mechanistically sound kinetic models. A fundamental kinetic model for the system is presented and a 2-site model was determined to be most appropriate, describing aromatic hydrogenation (postulated to be over a platinum site) and ketone hydrogenation (at the platinum titania interface). Solvent choice has little impact on the ketone hydrogenation rate constant but strongly impacts aromatic hydrogenation due to solvent-catalyst interaction. Reaction selectivity is also correlated to a fitted product adsorption constant parameter. This kinetic analysis method is the first of its kind demonstrating the role of solvents in influencing reactant adsorption and reaction selectivity.We acknowledge EPSRC for funding as part of the CASTech grant (EP/G011397/1) and the Department of Employment and Learning for a studentship (IM). NSB was funded by a PhD scholarship from the University of Birmingham. SKW was supported by an Engineering Doctorate Studentship in Formulation Engineering at the University of Birmingham sponsored by the EPSRC (EP/G036713/1) and Johnson Matthey.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.jcat.2015.06.00

    Global biogeography of coral recruitment: tropical decline and subtropical increase

    Get PDF
    Despite widespread climate-driven reductions of coral cover on tropical reefs, little attention has been paid to the possibility that changes in the geographic distribution of coral recruitment could facilitate beneficial responses to the changing climate through latitudinal range shifts. To address this possibility, we compiled a global database of normalized densities of coral recruits on settlement tiles (corals m(-2)) deployed from 1974 to 2012, and used the data therein to test for latitudinal range shifts in the distribution of coral recruits. In total, 92 studies provided 1253 records of coral recruitment, with 77 % originating from settlement tiles immersed for 3-24 mo, herein defined as long-immersion tiles (LITs); the limited temporal and geographic coverage of data from short-immersion tiles (SITs; deployed for 20 degrees latitude). These trends indicate that a global decline in coral recruitment has occurred since 1974, and the persistent reduction in the densities of recruits in equatorial latitudes, coupled with increased densities in sub-tropical latitudes, suggests that coral recruitment may be shifting poleward

    Building Strategies into QBF Proofs

    Get PDF
    Strategy extraction is of great importance for quantified Boolean formulas (QBF), both in solving and proof complexity. So far in the QBF literature, strategy extraction has been algorithmically performed from proofs. Here we devise the first QBF system where (partial) strategies are built into the proof and are piecewise constructed by simple operations along with the derivation. This has several advantages: (1) lines of our calculus have a clear semantic meaning as they are accompanied by semantic objects; (2) partial strategies are represented succinctly (in contrast to some previous approaches); (3) our calculus has strategy extraction by design; and (4) the partial strategies allow new sound inference steps which are disallowed in previous central QBF calculi such as Q-Resolution and long-distance Q-Resolution. The last item (4) allows us to show an exponential separation between our new system and the previously studied reductionless long-distance resolution calculus. Our approach also naturally lifts to dependency QBFs (DQBF), where it yields the first sound and complete CDCL-style calculus for DQBF, thus opening future avenues into CDCL-based DQBF solving
    corecore